Subscribe to RSS
DOI: 10.1055/s-0043-1775490
(Supra)Molecular Switches Controlled by Artificial Signaling Cascades
We thank Science and Engineering Research Board (SERB, DST), India, for financial support via project SRG/2020/001486 (S.D.), SRG/2021/001033 (S.P.). A.S. acknowledges the support from Prime Minister’s Research Fellowship (PMRF; 0802003). S.D. and A.S. acknowledge the support from Indian Institute of Science Education and Research, Thiruvananthapuram (IISER TVM). J.V. and S.P. thank SRM Institute of Science and Technology (SRMIST). M. S. is indebted to the University of Siegen.

Abstract
Biological communication is an indispensable component of intra- and extracellular regulation of life. Inspired by such complicated control networks, systems chemistry has begun to advance tools for autonomous networks by developing communication protocols between molecular entities to up- and downregulate functions (simple catalysis, dual catalysis, time-encoded emission). However, up to now these protocols remain relatively simple, indicating that there will be a long way to self-sustaining and autonomous functional systems. This review focuses on communication in artificial multicomponent systems that operate under either equilibrium or dissipative conditions, detailing the design principles for their operations. Finally, we discuss the key differences between biological and artificial signaling, emphasizing the limitations of artificial signaling and suggesting future directions in the field of artificial signal transduction.
1 Introduction
2 Communication and Information Processing in Artificial Systems: Toward Smart Systems Chemistry
2.1 Type 1: External Signal with One Sender, One Messenger, and One Receiver
2.2 Type 2: External Signal with One Sender, One Messenger, and Two Receivers
2.3 Type 3: One/Two External Signal(s) with Two Senders, Two Messengers, and One/Two Receiver(s)
2.4 Type 4: External Signal with Cascaded Communication Across Multiple Receivers
2.5 Type 5: Signaling Cascade Leading to Multiple Chemical Reactions
2.6 Type 6: Signaling Cascade with Self-Regulation
3 The Bigger Picture
4 Conclusion and Outlook
Key words
supramolecular chemistry - organocatalysis - transition metal catalysis - host-guest systems - complexes - cascaded transformations - switch - receptorsPublication History
Received: 28 February 2025
Accepted after revision: 08 April 2025
Article published online:
01 July 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Akyildiz IF, Brunetti F, Blázquez C. Comput. Networks 2008; 52: 2260
- 2 Nelson D, Cox MM. Lehninger Principles of Biochemistry . W. H. Freeman and Company; New York: 2005
- 3 Erbas-Cakmak S, Kolemen S, Sedgwick AC, Gunnlaugsson T, James TD, Yoon J, Akkaya EU. Chem. Soc. Rev. 2018; 47: 2228
- 4 de Silva PA, Gunaratne NH. Q, McCoy CP. Nature 1993; 364: 42
- 5a Szaciłowski K. Chem. Rev. 2008; 108: 3481
- 5b Andréasson J, Pischel U. Chem. Soc. Rev. 2010; 39: 174
- 5c De Silva PA. Molecular Logic-Based Computation 2013
- 6a Blanco V, Leigh DA, Marcos V. Chem. Soc. Rev. 2015; 44: 5341
- 6b Ghorbani-Choghamarani A, Taherinia Z. RSC Adv. 2022; 12: 23595
- 7a Krauss R, Weinig H.-G, Seydack M, Bendig J, Koert U. Angew. Chem. Int. Ed. 2000; 39: 1835
- 7b Muraoka T, Kinbara K, Aida T. Nature 2006; 440: 512
- 7c Kai H, Nara S, Kinbara K, Aida T. J. Am. Chem. Soc. 2008; 130: 6725
- 7d Sahoo D, Bera A, Vennapusa SR, De S. Chem. Eur. J. 2025; 31: e202404771
- 8a Bernitzki K, Schrader T. Angew. Chem. Int. Ed. 2009; 48: 8001
- 8b De Poli M, Zawodny W, Quinonero O, Lorch M, Webb SJ, Clayden J. Science 2016; 352: 575
- 8c Langton MJ, Keymeulen F, Ciaccia M, Williams NH, Hunter CA. Nat. Chem. 2017; 9: 426
- 8d Ding Y, Williams NH, Hunter CA. J. Am. Chem. Soc. 2019; 141: 17847
- 8e Ahmad M, Johnson TG, Flerin M, Duarte F, Langton MJ. Angew. Chem. Int. Ed. 2024; 63: e202403314
- 9 Schmittel M. Isr. J. Chem. 2018; 59: 197
- 10a Nitschke JR. Nature 2009; 462: 736
- 10b Hunt RA. R, Otto S. Chem. Commun. 2011; 47: 847
- 10c Li J, Nowak P, Otto S. J. Am. Chem. Soc. 2013; 135: 9222
- 11 Mahata K, Saha ML, Schmittel M. J. Am. Chem. Soc. 2010; 132: 15933
- 12a Saha ML, De S, Pramanik S, Schmittel M. Chem. Soc. Rev. 2013; 42: 6860
- 12b Gaikwad S, Saha ML, Samanta D, Schmittel M. Chem. Commun. 2017; 53: 8034
- 12c Ahamed R, Venkatesh J, Srithar R, Gaikwad S, Pramanik S, Schmittel M. Org. Biomol. Chem. 2023; 21: 5492
- 13 Saha ML, Schmittel M. Org. Biomol. Chem. 2012; 10: 4651
- 14a Remón P, Pischel U. ChemPhysChem 2017; 18: 1667
- 14b Andréasson J, Pischel U. Coord. Chem. Rev. 2021; 429: 213695
- 14c De Luis B, Llopis-Lorente A, Sancenón F, Martínez-Máñez R. Chem. Soc. Rev. 2021; 50: 8829
- 15a Salles AG, Zarra S, Turner RM, Nitschke JR. J. Am. Chem. Soc. 2013; 135: 19143
- 15b Wang ZJ, Clary KN, Bergman RG, Raymond KN, Toste FD. Nat. Chem. 2013; 5: 100
- 15c Schmittel M. Chem. Commun. 2015; 51: 14956
- 16 Park JS, Yang J, Tran TT, Kim IS, Sessler JL. J. Am. Chem. Soc. 2018; 140: 7598
- 17 Battle C, Broedersz CP, Fakhri N, Geyer VF, Howard J, Schmidt CF, MacKintosh FC. Science 2016; 352: 604
- 18 Su J, Song Y, Zhu Z, Huang X, Fan J, Qiao J, Mao F. Signal Transduction Targeted Ther. 2024; 9: 196
- 19 Reisler E, Egelman EH. J. Biol. Chem. 2007; 282: 36133
- 21a Raymo FM, Giordani S. Org. Lett. 2001; 3: 3475
- 21b Raymo FM, Alvarado RJ, Giordani S, Cejas MA. J. Am. Chem. Soc. 2003; 125: 2361
- 21c Silvi S, Constable EC, Housecroft CE, Beves JE, Dunphy EL, Tomasulo M, Raymo FM, Credi A. Chem. Eur. J. 2008; 15: 178
- 21d Silvi S, Constable EC, Housecroft CE, Beves JE, Dunphy EL, Tomasulo M, Raymo FM, Credi A. Chem. Commun. 2009; 1484
- 22 Andréasson J, Pischel U. Chem. Soc. Rev. 2015; 44: 1053
- 23 Lehn JM. Chem. Eur. J. 2000; 6: 2097
- 24 Liu L, Liu P, Ga L, Ai J. ACS Omega 2021; 6: 30189
- 25a Lüning U. Angew. Chem. Int. Ed. 2012; 51: 8163
- 25b Dijk VL, Tilby MJ, Szpera R, Smith OA, Bunce HA. P, Fletcher SP. Nat. Rev. Chem. 2018; 2: 9876
- 25c Biswas PK, Saha S, Gaikwad S, Schmittel M. J. Am. Chem. Soc. 2020; 142: 7889
- 25d Ludwig J, Helberg J, Zipse H, Herges R. Beilstein J. Org. Chem. 2020; 16: 2119
- 25e Goswami A, Gaikwad S, Schmittel M. Chem. Eur. J. 2021; 27: 2997
- 26 Schmittel M, Howlader P. Chem. Rec. 2020; 21: 523
- 27 Jin Y, Yu C, Denmana JR, Zhang W. Chem. Soc. Rev. 2013; 42: 6634
- 28 Ren Y, You L. J. Am. Chem. Soc. 2015; 137: 14220
- 29a Landge SM, Aprahamian I. J. Am. Chem. Soc. 2009; 131: 18269
- 29b Su X, Robbins TF, Aprahamian I. Angew. Chem. Int. Ed. 2011; 50: 1841
- 30 Ray D, Foy JT, Hughes RP, Aprahamian I. Nat. Chem. 2012; 4: 757
- 31 Saha S, Biswas PK, Paul I, Schmittel M. Chem. Commun. 2019; 55: 14733
- 32 Ghosh A, Paul I, Saha S, Paululat T, Schmittel M. Org. Lett. 2018; 20: 7973
- 33a Gianneschi NC, Nguyen ST, Mirkin CA. J. Am. Chem. Soc. 2005; 127: 1644
- 33b Oliveri CG, Gianneschi NC, Nguyen ST, Mirkin CA, Stern CL, Wawrzak Z, Pink M. J. Am. Chem. Soc. 2006; 128: 16286
- 33c Yoon HJ, Heo J, Mirkin CA. J. Am. Chem. Soc. 2007; 129: 14182
- 33d Lifschitz AM, Rosen MS, McGuirk CM, Mirkin CA. J. Am. Chem. Soc. 2015; 137: 7252
- 34a Schmittel M, De S, Pramanik S. Angew. Chem. Int. Ed. 2012; 51: 3832
- 34b Schmittel M, Pramanik S, De S. Chem. Commun. 2012; 48: 11730
- 34c De S, Pramanik S, Schmittel M. Dalton Trans. 2014; 43: 10977
- 34d De S, Pramanik S, Schmittel M. Angew. Chem. Int. Ed. 2014; 53: 14255
- 34e Gaikwad S, Goswami A, De S, Schmittel M. Angew. Chem. Int. Ed. 2016; 55: 10512
- 35a Blanco V, Carlone A, Hänni KD, Leigh DA, Lewandowski B. Angew. Chem. Int. Ed. 2012; 51: 5166
- 35b Blanco V, Leigh DA, Lewandowska U, Lewandowski B, Marcos V. J. Am. Chem. Soc. 2014; 136: 15775
- 35c Leigh DA, Marcos V, Wilson MR. ACS Catal. 2014; 4: 4490
- 35d Biagini C, Fielden SD. P, Leigh DA, Schaufelberger F, Di Stefano S, Thomas D. Angew. Chem. Int. Ed. 2019; 58: 9876
- 35e Dommaschk M, Echavarren J, Leigh DA, Marcos V, Singleton TA. Angew. Chem. Int. Ed. 2019; 58: 14955
- 36 Fritsky IO, Ott R, Krämer R. Angew. Chem. Int. Ed. 2000; 39: 3255
- 37a Ouyang GH, He Y, Li Y, Xiang J, Fan Q. Angew. Chem. Int. Ed. 2015; 54: 4334
- 37b Galli M, Lewis JE. M, Goldup SM. Angew. Chem. Int. Ed. 2015; 54: 13545
- 37c Kwan C.-S, Chan AS. C, Leung KC-F. Org. Lett. 2016; 18: 976
- 37d Miller AJ. M. Dalton Trans. 2017; 46: 11987
- 37e Choudhury J. Tetrahedron Lett. 2018; 59: 487
- 37f Dorel R, Feringa BL. Chem. Commun. 2019; 55: 6477
- 37g Benda L, Doistau B, Rossi-Gendron C, Chamoreau L.-M, Hasenknopf B, Vives G. Commun. Chem. 2019; 2: 2399
- 37h Heard AW, Goldup SM. Chem 2020; 6: 994
- 37i Calles M, Puigcerver J, Alonso DA, Alajarin M, Martinez-Cuezva M, Berna J. Chem. Sci. 2020; 11: 3629
- 37j Benny R, De S. Dalton Trans. 2023; 52: 16767
- 38 Lewandowski B, De BG, Ward JW, Papmeyer M, Kuschel S, Aldegunde MJ, Gramlich PM. E, Heckmann D, Goldup SM, D’Souza DM, Fernandes AE, Leigh DA. Science 2013; 339: 189
- 39 Mittal N, Pramanik S, Paul I, De S, Schmittel M. J. Am. Chem. Soc. 2017; 139: 4270
- 40 Paul I, Mittal N, De S, Bolte M, Schmittel M. J. Am. Chem. Soc. 2019; 141: 5139
- 41a Gaikwad S, Pramanik S, De S, Schmittel M. Dalton Trans. 2018; 47: 1786
- 41b Gaikwad S, Özer MS, Pramanik S, Schmittel M. Org. Biomol. Chem. 2019; 17: 7956
- 42 Goswami A, Pramanik S, Schmittel M. Chem. Commun. 2018; 54: 3955
- 43 Sahoo D, Benny R, KS NK, De S. ChemPlusChem 2022; 87: e202100322
- 44 Wimberger L, Prasad SK. K, Peeks MD, Andréasson J, Schmidt TW, Beves JE. J. Am. Chem. Soc. 2021; 143: 20758
- 45 Tatum L, Foy JT, Aprahamian I. J. Am. Chem. Soc. 2014; 136: 17438
- 46 Tron A, Pianet I, Martinez-Cuezva A, Tucker JH. R, Pisciottani L, Alajarin M, Berna J, McClenaghan ND. Org. Lett. 2016; 19: 154
- 47 Vázquez J, Romero MA, Dsouza RN, Pischel U. Chem. Commun. 2016; 52: 6245
- 48 Pramanik S, De S, Schmittel M. Angew. Chem. Int. Ed. 2014; 53: 4709
- 49 Pramanik S, De S, Schmittel M. Chem. Commun. 2014; 50: 13254
- 50 Schmittel M. Dalton Trans. 2018; 47: 6654
- 51 Ghosh A, Paul I, Schmittel M. J. Am. Chem. Soc. 2019; 141: 18954
- 52 Fu H, Pramanik S, Aprahamian I. J. Am. Chem. Soc. 2023; 145: 19554
- 53 Paul I, Ghosh A, Bolte M, Schmittel M. ChemistryOpen 2019; 8: 1355
- 54 Paul I, Valiyev I, Schmittel M. J. Am. Chem. Soc. 2024; 146: 2435
- 55 Chen-Wu J, Máximo P, Remón P, Parola J, Basílio N, Pischel U. Chem. Commun. 2023; 59: 3431
- 56 Valiyev I, Ghosh A, Paul I, Schmittel M. Chem. Commun. 2022; 58: 1728
- 57 Pramanik S, Aprahamian I. J. Am. Chem. Soc. 2016; 138: 15142
- 58 Matsumura S, Kun A, Ryckelynck M, Coldren F, Szilágyi A, Jossinet F, Rick C, Nghe P, Szathmáry E, Griffiths AD. Science 2016; 354: 1293
- 59 Adamala K, Szostak JW. Nat. Chem. 2013; 5: 495
- 60a Collins BS. L, Kistemaker JC. M, Otten EB. L, Feringa BL. Nat. Chem. 2016; 8: 860
- 60b Trevisan L, Kocsis I, Hunter CA. Chem. Commun. 2021; 57: 2196
- 61a Remón P, González D, Li S, Basílio N, Andréasson J, Pischel U. Chem. Commun. 2019; 55: 4335
- 61b Romero MA, Fernandes RJ, Moro AJ, Basílio N, Pischel U. Chem. Commun. 2018; 54: 13335
- 62 Zheng Q, Guo Y, Yang L, Zhao Z, Wu Z, Zhang H, Liu J, Cheng X, Wu J, Yang H, Jiang H, Pan L, Liu W. Cell Chem. Biol. 2016; 23: 352
- 63a You M, Xie Z, Zhang N, Zhang Y, Xiao D, Liu S, Zhuang W, Li L, Tao Y. Signal Transduction Targeted Ther. 2023; 8: 1
- 63b Song P, Gao H, Gao Z, Liu J, Zhang R, Kang B, Xu J.-J, Chen H.-Y. Chem 2021; 7: 569
- 64 Mishra A, Dhiman S, George SJ. Angew. Chem. Int. Ed. 2020; 60: 2740
- 65 Amano S, Borsley S, Leigh DA, Sun Z. Nat. Nanotechnol. 2021; 16: 1057
- 66 Tompa P. Chem. Soc. Rev. 2016; 45: 4252
- 67 Nygaard R, Zou Y, Dror RO, Mildorf TJ, Arlow DH, Manglik A, Pan AC, Liu CW, Fung JJ, Bokoch MP, Thian FS, Kobilka TS, Shaw DE, Mueller L, Prosser RS, Kobilka BK. Cell 2013; 152: 532
- 68 Keramidas, Moorhouse AJ, Schofield PR, Barry PH. Prog. Biophys. Mol. Biol. 2004; 86: 161
- 69 Keenan TM, Folch A. Lab Chip 2008; 8: 34
- 70 Choi S, Mukhopadhyay RD, Sen SK, Hwang I, Kim K. Chem 2022; 8: 2192
- 71 Ghosh S, Baltussen MG, Ivanov NM, Haije R, Jakštaitė M, Zhou T, Huck WT. S. Chem. Rev. 2024; 124: 2553
- 72a Amelia M, Zou L, Credi A. Coord. Chem. Rev. 2010; 254: 2267
- 72b Nicoli F, Paltrinieri E, Bakić MT, Baroncini M, Silvi S, Credi A. Coord. Chem. Rev. 2021; 428: 213589
- 73 Shi K, Song C, Wang Y, Chandrawati R, Lin Y. Commun. Mater. 2023; 4: 65
- 74 Harmsel MT, Maguire OR, Runikhina SA, Wong AS. Y, Huck WT. S, Harutyunyan SR. Nature 2023; 621: 87
- 75 Breslow NR. Chem. Eng. News 2016; 94: 28
- 76a Soai K, Shibata T, Morioka H, Choji K. Nature 1995; 378: 767
- 76b Blackmond DG. Proc. Natl. Acad. Sci. U. S. A. 2004; 101: 5732
- 77 Merindol R, Walther A. Chem. Soc. Rev. 2017; 46: 5588
- 78 Ashkenasy G, Hermans TM, Otto S, Taylor AF. Chem. Soc. Rev. 2017; 46: 2543
- 79 Locasale JW, Chakraborty AK. PLoS Comput. Biol. 2008; 4: e1000099
- 80 Murugana A, Huseb DA, Leibler S. Proc. Natl. Acad. Sci. U. S. A. 2012; 109: 12034
- 81 Karoui H, Patwal PS, Kumar BV. V. S. P, Martin N. Front. Mol. Biosci. 2022; 9: 880525