Planta Med
DOI: 10.1055/a-2597-8133
Reviews

Antidiabetic Potential of Sophora Species: Mechanisms, Bioactive Constituents, and Therapeutic Prospects

Mahdis Mousavi
1   Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Evin, Tehran, Iran
2   Endocrine Physiology Research Center, Research Institute for Endocrine Molecular Biology, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
,
Mahdi Moridi Farimani
1   Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Evin, Tehran, Iran
,
Khosrow Kashfi
3   Department of Molecular, Cellular, and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, USA
,
Asghar Ghasemi
2   Endocrine Physiology Research Center, Research Institute for Endocrine Molecular Biology, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
› Author Affiliations

This study was supported by a grant (Grant No. 43 011 273 – 3) from Shahid Beheshti University of Medical Sciences, Tehran, Iran. KK was supported in part by the National Institutes of Health, grant number 2 U54MD017 979 – 01A1. Financial support by the Shahid Beheshti University Research Council is gratefully acknowledged.

Abstract

Diabetes is a major global health concern, and achieving optimal glycemic control remains a challenge for many patients. Despite the availability of current antidiabetic medications, about two-thirds of patients worldwide fail to achieve adequate glycemic control, underscoring the need for novel treatments. Herbal medicine has significantly contributed to drug discovery, and Sophora, a genus in the Fabaceae family, has long been used in traditional medicine. Preclinical studies suggest that various chemical constituents of Sophora exhibit antidiabetic properties. This review summarizes in vitro and in vivo evidence on the antidiabetic effects of Sophora, highlighting its active ingredients and mechanisms of action. A literature search was conducted using Web of Science, Scopus, PubMed, and Google Scholar with the keywords ‘Sophora’, ‘diabetes’, and ‘herbal medicine’. Studies indicate that Sophora reduces fasting glucose in type 1 and type 2 diabetes (T2D) by approximately 33% and 37%, respectively. Additionally, it decreases body weight, improves glucose tolerance, reduces insulin resistance, and enhances lipid profiles in T2D. The antidiabetic mechanisms of Sophora involve the activation of phospholipase C-protein kinase C (PLC-PKC), phosphatidylinositol-3-kinase (PI3K)-Akt (PI3K-Akt), and adenosine monophosphate (AMP)-activated protein kinase (AMPK) pathways, leading to enhanced glucose uptake in the skeletal muscle. Furthermore, Sophora activates the PI3K-Akt pathway and inhibits nuclear factor-kappa B (NFκB), thereby reducing hepatic gluconeogenesis and inflammation. Among its active constituents, flavonoids exhibit the most significant antidiabetic activity. While Sophora holds promise for antidiabetic drug development, further preclinical studies assessing sex differences and long-term safety are required before progressing to human clinical trials.



Publication History

Received: 20 October 2024

Accepted after revision: 28 April 2025

Accepted Manuscript online:
30 April 2025

Article published online:
27 May 2025

© 2025. Thieme. All rights reserved.

Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany

 
  • References

  • 1 IDF, International Diabetes Federation. IDF Diabetes Atlas. 10th edition. Brussels, Belgium: IDF; 2021. Accessed January 10, 2025 at: https://www.diabetesatlas.org
  • 2 WHO, World Health Organization. Classification of Diabetes Mellitus. Geneva: WHO; 2019
  • 3 ADA, American Diabetes Association. 6. glycemic goals and hypoglycemia: Standards of care in diabetes-2024. Diabetes Care 2024; 47: S111-S125
  • 4 Mannucci E, Monami M, Dicembrini I, Piselli A, Porta M. Achieving HbA1c targets in clinical trials and in the real world: A systematic review and meta-analysis. J Endocrinol Invest 2014; 37: 477-495
  • 5 Tong PC, Ko GT, So WY, Chiang SC, Yang X, Kong AP, Ozaki R, Ma RC, Cockram CS, Chow CC, Chan JC. Use of anti-diabetic drugs and glycaemic control in type 2 diabetes-The Hong Kong diabetes registry. Diabetes Res Clin Pract 2008; 82: 346-352
  • 6 Ghasemi A, Norouzirad R. Type 2 diabetes: An updated overview. Crit Rev Oncog 2019; 24: 213-222
  • 7 WHO, World Health Organization. The Use of Herbal Medicines in Primary Health Care. New Delhi: WHO Regional Office for South-East Asia; 2009
  • 8 WHO, World Health Organization. Key Technical Issues of Herbal Medicines with Reference to Interaction with other Medicines. Geneva: WHO; 2021
  • 9 Newman DJ, Cragg GM. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod 2020; 83: 770-803
  • 10 Blaschek W. Natural products as lead compounds for Sodium Glucose Cotransporter (SGLT) inhibitors. Planta Med 2017; 83: 985-993
  • 11 Ehrenkranz JR, Lewis NG, Kahn CR, Roth J. Phlorizin: A review. Diabetes Metab Res Rev 2005; 21: 31-38
  • 12 Klugh K. Goatsrue, Galega officinalis, in Pennsylvania. Regul Hortic 1998; 24: 25-28
  • 13 Bailey CJ. Metformin: Historical overview. Diabetologia 2017; 60: 1566-1576
  • 14 POWO, Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. Published on the Internet: Accessed April 09, 2025 at: https://powo.science.kew.org
  • 15 Krishna PM, Knv R, Banji D. A review on phytochemical, ethnomedical and pharmacological studies on genus Sophora, Fabaceae. Rev Bras Farmacogn 2012; 22: 1145-1154
  • 16 Boozari M, Soltani S, Iranshahi M. Biologically active prenylated flavonoids from the genus Sophora and their structure-activity relationship-A review. Phytother Res 2019; 33: 546-560
  • 17 Abd-Alla HI, Souguir D, Radwan MO. Genus Sophora: A comprehensive review on secondary chemical metabolites and their biological aspects from past achievements to future perspectives. Arch Pharm Res 2021; 44: 903-986
  • 18 He X, Fang J, Huang L, Wang J, Huang X. Sophora flavescens Ait.: Traditional usage, phytochemistry and pharmacology of an important traditional Chinese medicine. J Ethnopharmacol 2015; 172: 10-29
  • 19 Wang R, Deng X, Gao Q, Wu X, Han L, Gao X, Zhao S, Chen W, Zhou R, Li Z, Bai C. Sophora alopecuroides L.: An ethnopharmacological, phytochemical, and pharmacological review. J Ethnopharmacol 2020; 248: 112172
  • 20 He X, Bai Y, Zhao Z, Wang X, Fang J, Huang L, Zeng M, Zhang Q, Zhang Y, Zheng X. Local and traditional uses, phytochemistry, and pharmacology of Sophora japonica L.: A review. J Ethnopharmacol 2016; 187: 160-182
  • 21 Mahdavi B, Hajar T, Ghodsi A, Mohammadhosseini M, Mehmandost M, Talebi E. Antidiabetic effect of Sophora pachycarpa seeds extract in streptozotocin-induced diabetic mice: A statistical evaluation. J Investig Med 2021; 69: 1201-1207
  • 22 Shao J, Liu Y. An integrated fecal microbiome and metabolomics in T2DM Rats reveal antidiabetes effects from host-microbial metabolic axis of EtOAc extract from Sophora flavescens . Oxid Med Cell Longev 2020; 2020: 1805418
  • 23 Yang Y, Liu Y, Gao Y. Exploring the anti-diabetic effects and the underlying mechanisms of ethyl acetate extract from Sophora flavescens by integrating network pharmacology and pharmacological evaluation. Tradit Med Res 2022; 7: 3
  • 24 Huang Y, Hao J, Tian D, Wen Y, Zhao P, Chen H, Lv Y, Yang X. Antidiabetic activity of a flavonoid-rich extract from Sophora davidii (Franch.) skeels in KK-Ay mice via activation of AMP-activated protein kinase. Front Pharmacol 2018; 9: 760
  • 25 Huang M, Deng S, Han Q, Zhao P, Zhou Q, Zheng S, Ma X, Xu C, Yang J, Yang X. Hypoglycemic activity and the potential mechanism of the flavonoid rich extract from Sophora tonkinensis Gagnep. in KK-Ay mice. Front Pharmacol 2016; 7: 288
  • 26 Lv Y, Zhao P, Pang K, Ma Y, Huang H, Zhou T, Yang X. Antidiabetic effect of a flavonoid-rich extract from Sophora alopecuroides L. in HFD- and STZ- induced diabetic mice through PKC/GLUT4 pathway and regulating PPARα and PPARγ expression. J Ethnopharmacol 2021; 268: 113654
  • 27 Yang X, Yang J, Xu C, Huang M, Zhou Q, Lv J, Ma X, Ke C, Ye Y, Shu G, Zhao P. Antidiabetic effects of flavonoids from Sophora flavescens EtOAc extract in type 2 diabetic KK-ay mice. J Ethnopharmacol 2015; 171: 161-170
  • 28 Luo Y, Zhao K, Li Z, Gao Y, Lin M, Li Y, Wang S, Liu Y, Chen L. Effect of the ethyl acetate extract of Sophora flavescens Aiton on diabetic retinopathy based on untargeted retinal metabolomics. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1198: 123233
  • 29 Sato S, Takeo J, Aoyama C, Kawahara H. Na+-glucose cotransporter (SGLT) inhibitory flavonoids from the roots of Sophora flavescens . Bioorg Med Chem 2007; 15: 3445-3449
  • 30 Jung CH, Zhou S, Ding GX, Kim JH, Hong MH, Shin YC, Kim GJ, Ko SG. Antihyperglycemic activity of herb extracts on streptozotocin-induced diabetic rats. Biosci Biotechnol Biochem 2006; 70: 2556-2559
  • 31 Miao MS, Cheng BL, Jiang N. Effect of Sophora japonica total flavonoids on mouse models of hyperglycemia and diabetes model. AMM 2014; 664: 397-401
  • 32 Guo C, Zhang C, Li L, Wang Z, Xiao W, Yang Z. Hypoglycemic and hypolipidemic effects of oxymatrine in high-fat diet and streptozotocin-induced diabetic rats. Phytomedicine 2014; 21: 807-814
  • 33 Wang SB, Jia JP. Oxymatrine attenuates diabetes-associated cognitive deficits in rats. Acta Pharmacol Sin 2014; 35: 331-338
  • 34 Huang Y, Li X. Oxymatrine Ameliorates memory impairment in diabetic rats by regulating oxidative stress and apoptosis: involvement of NOX2/NOX4. Oxid Med Cell Longev 2020; 2020: 3912173
  • 35 Zuo ML, Wang AP. Oxymatrine ameliorates insulin resistance in rats with type 2 diabetes by regulating the expression of KSRP, PETN, and AKT in the liver. J Cell Biochem 2019; 120: 16185-16194
  • 36 Zhu YX, Hu HQ, Zuo ML, Mao L, Song GL, Li TM, Dong LC, Yang ZB, Ali Sheikh MS. Effect of oxymatrine on liver gluconeogenesis is associated with the regulation of PEPCK and G6Pase expression and AKT phosphorylation. Biomed Rep 2021; 15: 56
  • 37 He W, Zhou H, He X. Aloperine protects beta-cells against streptozocin-induced injury to attenuate diabetes by targeting NOS1. Eur J Pharmacol 2022; 916: 174721
  • 38 Song G, Huang Y, Xiong M, Yang Z, Liu Q, Shen J, Zhao P, Yang X. Aloperine relieves type 2 diabetes mellitus via enhancing GLUT4 expression and translocation. Front Pharmacol 2020; 11: 561956
  • 39 Guo S, Yan T, Shi L, Liu A, Zhang T, Xu Y, Jiang W, Yang Q, Yang L, Liu L, Zhao R, Zhang S. Matrine, as a CaSR agonist promotes intestinal GLP-1 secretion and improves insulin resistance in diabetes mellitus. Phytomedicine 2021; 84: 153507
  • 40 Mahzari A, Zeng XY, Zhou X, Li S, Xu J, Tan W, Vlahos R, Robinson S, Ye JM. Repurposing matrine for the treatment of hepatosteatosis and associated disorders in glucose homeostasis in mice. Acta Pharmacol Sin 2018; 39: 1753-1759
  • 41 Zeng XY, Wang H, Bai F, Zhou X, Li SP, Ren LP, Sun RQ, Xue CC, Jiang HL, Hu LH, Ye JM. Identification of matrine as a promising novel drug for hepatic steatosis and glucose intolerance with HSP72 as an upstream target. Br J Pharmacol 2015; 172: 4303-4318
  • 42 Li K, Ma Y, Zhou T, Yang X, Choi HY. Chemical constituents from roots of Sophora davidii (Franch.) Skeels and their glucose transporter 4 translocation activities. Molecules 2021; 26: 756
  • 43 Guo J, Li J, Wei H, Liang Z. Maackiain protects the kidneys of type 2 diabetic rats via modulating the Nrf2/HO-1 and TLR4/NF-κB/Caspase-3 pathways. Drug Des Devel Ther 2021; 15: 4339-4358
  • 44 Kim JH, Ryu YB, Kang NS, Lee BW, Heo JS, Jeong IY, Park KH. Glycosidase inhibitory flavonoids from Sophora flavescens . Biol Pharm Bull 2006; 29: 302-305
  • 45 Quang TH, Ngan NTT, Minh CV, Kiem PV, Tai BH, Thao NP, Kwon SU, Lee YM, Kang HK, Kim YH. α-Glucosidase inhibitors from the roots of Sophora flavescens . Bull Korean Chem Soc 2012; 33: 1791-1793
  • 46 Wang H, Chen L, Zhang L, Gao X, Wang Y, Weiwei T. Protective effect of sophoraflavanone G on streptozotocin (STZ)-induced inflammation in diabetic rats. Biomed Pharmacother 2016; 84: 1617-1622
  • 47 Ma Y, Zhou T, Zhao P, Choi HY, Hao J, Huang H, Wu C, Yang X, Pang K. New flavonoids from the roots of Sophora davidii (Franch.) Skeels and their glucose transporter 4 translocation activities. Bioorg Chem 2021; 106: 104500
  • 48 Kim JH, Cho CW, Kim HY, Kim KT, Choi GS, Kim HH, Cho IS, Kwon SJ, Choi SK, Yoon JY, Yang SY, Kang JS, Kim YH. α-Glucosidase inhibition by prenylated and lavandulyl compounds from Sophora flavescens roots and in silico analysis. Int J Biol Macromol 2017; 102: 960-969
  • 49 Chen QC, Zhang WY, Jin W, Lee IS, Min BS, Jung HJ, Na M, Lee S, Bae K. Flavonoids and isoflavonoids from Sophorae flos improve glucose uptake in vitro. Planta Med 2010; 76: 79-81
  • 50 Lou D, Fang Q, He Y, Ma R, Wang X, Li H, Qi M. Oxymatrine alleviates high-fat diet/streptozotocin-induced non-alcoholic fatty liver disease in C57BL/6 J mice by modulating oxidative stress, inflammation and fibrosis. Biomed Pharmacother 2024; 174: 116491
  • 51 Zhang R, Liao W, Wu K, Hua L, Wu M, Li C, Cai F. Matrine alleviates spatial learning and memory impairment in diabetic mice by inhibiting endoplasmic reticulum stress and through modulation of PK2/PKRs pathway. Neurochem Int 2022; 154: 105289
  • 52 Guo C, Han F, Zhang C, Xiao W, Yang Z. Protective effects of oxymatrine on experimental diabetic nephropathy. Planta Med 2014; 80: 269-276
  • 53 Wang L, Li X, Zhang Y, Huang Y. Oxymatrine ameliorates diabetes-induced aortic endothelial dysfunction via the regulation of eNOS and NOX4. J Cell Biochem 2019; 120: 7323-7332
  • 54 Wu C, Luan H, Wang S, Zhang X, Wang R, Jin L, Guo P, Chen X. Modulation of lipogenesis and glucose consumption in HepG2 cells and C2C12 myotubes by sophoricoside. Molecules 2013; 18: 15624-15635
  • 55 Zhang M, Zhang Y, Huang Q, Duan H, Zhao G, Liu L, Li Y. Flavonoids from Sophora alopecuroides L. improve palmitate-induced insulin resistance by inhibiting PTP1B activity in vitro. Bioorg Med Chem Lett 2021; 35: 127775
  • 56 Yang J, Yang X, Wang C, Lin Q, Mei Z, Zhao P. Sodium-glucose-linked transporter 2 inhibitors from Sophora flavescens . Med Chem Res 2015; 24: 1265-1271
  • 57 Assifi MM, Suchankova G, Constant S, Prentki M, Saha AK, Ruderman NB. AMP-activated protein kinase and coordination of hepatic fatty acid metabolism of starved/carbohydrate-refed rats. Am J Physiol Endocrinol Metab 2005; 289: E794-800
  • 58 Ruderman NB, Saha AK, Vavvas D, Witters LA. Malonyl-CoA, fuel sensing, and insulin resistance. Am J Physiol 1999; 276: E1-e18
  • 59 Jung SR, Kim YJ, Gwon AR, Lee J, Jo DG, Jeon TJ, Hong JW, Park KM, Park KW. Genistein mediates the anti-adipogenic actions of Sophora japonica L. extracts. J Med Food 2011; 14: 360-368
  • 60 Lehrke M, Lazar MA. The many faces of PPARgamma. Cell 2005; 123: 993-999
  • 61 Clayton JA, Collins FS. Policy: NIH to balance sex in cell and animal studies. Nature 2014; 509: 282-283
  • 62 McCullough LD, de Vries GJ, Miller VM, Becker JB, Sandberg K, McCarthy MM. NIH initiative to balance sex of animals in preclinical studies: generative questions to guide policy, implementation, and metrics. Biol Sex Differ 2014; 5: 15