Synlett
DOI: 10.1055/a-2577-0837
letter
Emerging Trends in Organic Chemistry: A Focus on India

Design, Synthesis, and In Silico Studies of 1,2,3-Triazole-Linked Coumarin–Chalcone Hybrids as Potential Antifungal Agents

Kavita Kavita
a   Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India
,
Sumit Kumar
a   Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India
,
Vipin K. Maikhuri
a   Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India
,
Gautam Deo
b   Department of Chemistry, University of Delhi, Delhi, 110007, India
,
Mrityunjay K. Tiwari
b   Department of Chemistry, University of Delhi, Delhi, 110007, India
,
Jyotirmoy Maity
a   Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India
c   Department of Chemistry, St. Stephen’s College, University of Delhi, Delhi, 110007, India
,
Brajendra K. Singh
a   Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India
› Author Affiliations

We appreciate the funding provided by the Institute of Eminence (IOE), University of Delhi, which has contributed to further research and development.


We dedicate this article to the fond memory of our beloved late Professor Ashok K. Prasad.

Abstract

Fungal infections are a growing global health concern due to their rising incidence and increasing resistance to existing drugs. With the aim of developing new antifungal candidates, this study introduces a series of novel coumarin–chalcone hybrids linked through a 1,2,3-triazole moiety. The hybrids were synthesized using Cu(I)-catalyzed azide–alkyne cycloaddition, with optimized conditions giving yields of 75–85%. In silico absorption, distribution, metabolism, and excretion (ADME) analysis predicted favorable pharmacokinetic properties, suggesting that the products have potential as drug-like candidates. Molecular-docking studies revealed strong binding interactions with sterol 14α-demethylase, a crucial enzyme in fungal ergosterol biosynthesis, indicating that the products have potential as antifungal agents. All the synthesized compounds showed a relatively more-negative binding energy than the standard fungicide hexaconazole, indicating their affinity for the active pocket. These triazole-linked coumarin–chalcone hybrids show promise as antifungal candidates due to their effective synthesis, favorable ADME properties, and strong binding interactions with sterol 14α-demethylase. They are, therefore, viable leads for further biological evaluation and potential therapeutic applications.

Supporting Information



Publication History

Received: 28 February 2025

Accepted after revision: 07 April 2025

Accepted Manuscript online:
07 April 2025

Article published online:
30 June 2025

© 2025. Thieme. All rights reserved

Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Kainz K, Bauer MA, Madeo F, Carmona-Gutierrez D. Microb. Cell 2020; 7: 143
  • 2 Bongomin F, Gago S, Oladele RO, Denning DW. J. Fungi 2017; 3: 57
  • 3 Kathiravan MK, Salake AB, Chothe AS, Dudhe PB, Watode RP, Mukta MS, Gadhwe S. Bioorg. Med. Chem. 2012; 20: 5678
  • 4 Calderone R, Sun N, Gay-Andrieu F, Groutas W, Weerawarna P, Prasad S, Alex D, Li D. Future Microbiol. 2014; 9: 791
  • 5 Bitla S, Gayatri AA, Puchakayala MR, Bhukya VK, Vannada J, Dhanavath R, Kuthati B, Kothula D, Sagurthi SR, Atcha KR. Bioorg. Med. Chem. Lett. 2021; 41: 128004
    • 6a Van Daele R, Spriet I, Wauters J, Maertens J, Mercier T, Van Hecke S, Brüggemann R. Med. Mycol. J. 2019; 57: S328
    • 6b Nguyen M.-VH, Davis MR, Wittenberg R, Mchardy I, Baddley JW, Young BY, Odermatt A, Thompson GR. III. Clin. Infect. Dis. 2020; 70: 2593
  • 7 Stewart AG, Paterson DL. Expert Opin. Pharmacother. 2021; 22: 1857
  • 8 Shafiei M, Peyton L, Hashemzadeh M, Foroumadi A. Bioorg. Chem. 2020; 104: 104240
  • 9 Sheehan DJ, Hitchcock CA, Sibley CM. Clin. Microbiol. Rev. 1999; 12: 40
  • 10 Martins Teixeira M, Teixeira Carvalho D, Sousa E, Pinto E. Pharmaceuticals 2022; 15: 1427
  • 11 Agalave SG, Maujan SR, Pore VR. Chem. Asian J. 2011; 6: 2696
  • 12 Guo H.-Y, Chen Z.-A, Shen Q.-K, Quan Z.-S. J. Enzyme Inhib. Med. Chem. 2021; 36: 1115
  • 13 Zhou C.-H, Wang Y. Curr. Med. Chem. 2012; 19: 239
  • 14 Khan J, Rani A, Aslam M, Maharia RS, Pandey G, Nand B. Tetrahedron 2024; 162: 134122
  • 15 Bérubé G. Expert Opin. Drug Discovery 2016; 10: 281
  • 16 Ramprasad J, Sthalam VK, Thampunuri RL. M, Bhukya S, Ummanni R, Balasubramanian S, Pabbaraja S. Bioorg. Med. Chem. Lett. 2019; 29: 126671
  • 17 Haroun M, Tratrat C, Kochkar H, Nair AB. Curr. Top. Med. Chem. 2021; 21: 462
  • 18 Yadav M, Lal K, Kumar A, Kumar A, Kumar D. J. Mol. Struct. 2022; 1261: 132867
  • 19 Dongamanti A, Bommidi VL, Arram G, Sidda R. Heterocycl. Commun. 2014; 20: 293
  • 20 Akolkar SV, Nagargoje AA, Shaikh MH, Warshagha MZ. A, Sangshetti JN, Damale MG, Shingate BB. Arch. Pharm. (Weinheim, Ger.) 2020; 353: e2000164
  • 21 Yan W, Wang X, Li K, Li TX, Wang J.-J, Yao K.-C, Cao L.-L, Zhao S.-S, Ye Y.-H. Pestic. Biochem. Physiol. 2019; 156: 160
  • 22 Stefanachi A, Leonetti F, Pisani L, Catto M, Carotti A. Molecules 2018; 23: 250
  • 23 Arya CG, Chandrakanth M, Fabitha K, Thomas NM, Pramod RN, Gondru R, Banothu J. Results Chem. 2022; 4: 100631
  • 24 Ronad PM, Noolvi MN, Sapkal S, Dharbhamulla S, Maddi VS. Eur. J. Med. Chem. 2010; 45: 85
  • 25 Raghu M, Nagaraj A, Reddy CS. J. Heterocycl. Chem. 2009; 46: 261
  • 26 Shaikh MH, Subhedar DD, Khan FA. K, Sangshetti JN, Shingate BB. Chin. Chem. Lett. 2016; 27: 295
  • 27 Zhuang C, Zhang W, Sheng C, Zhang W, Xing C, Miao Z. Chem. Rev. 2017; 117: 7762
  • 28 Dhaliwal JS, Moshawih S, Goh KW, Loy MJ, Hossain MS, Hermansyah A, Kotra V, Kifli N, Goh HP, Dhaliwal SK. S, Yassin H, Ming LC. Molecules 2022; 27: 7062
  • 29 Mahapatra DK, Bharti SK, Asati V. Eur. J. Med. Chem. 2015; 101: 496
  • 30 Gupta D, Jain DK. J. Adv. Pharm. Technol. Res. 2015; 6: 141
  • 31 Shakil NA, Singh MK, Kumar J, Sathiyendiran M, Kumar G, Singh MK, Pandey RP, Pandey A, Parmar VS. J. Environ. Sci. Health, Part B 2010; 45: 524
  • 33 Maikhuri VK, Bohra K, Srivastava S, Kavita K, Prasad AK. Synth. Commun. 2019; 49: 3140
    • 34a Singla H, Maikhuri VK, Kavita K, Prasad AK. ChemistrySelect 2023; 8: e202203412
    • 34b Khandaker TA, Hess JD, Aguilera R, Andrei G, Snoeck R, Schols D, Pradhan P, Lakshman MK. Eur. J. Org. Chem. 2019; 5610
  • 37 Arora A, Kumar S, Kumar S, Dua A, Singh BK. Org. Biomol. Chem. 2024; 22: 4922
  • 38 SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717.
  • 39 Lipinski CA. Drug Discov. Today Technol. 2004; 1: 337
  • 40 Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kopple KD. J. Med. Chem. 2002; 45: 2615
  • 41 Sanner MF. J. Mol. Graph Model 1999; 17: 57
  • 42 1,2,3-Triazole-Linked CoumarinChalcone Hybrids 10ar; General Procedure In a 50 mL round-bottomed flask, the appropriate propargylated chalcone 6 (1.96 mmol) and 4-azidocoumarin 9 (2.28 mmol) were dissolved in PEG-400. CuI (10 mol %, 0.19 mmol) was added, and the resulting mixture was stirred at 60 °C for 4–6 h until the reaction was complete (TLC). The product was then extracted with EtOAc, and the solution was concentrated under reduced pressure in a rotary evaporator. The resulting crude product was purified by column chromatography [silica gel, EtOAc–PE (gradient)]. 4-[4-({4-[(2E)-3-Phenylprop-2-enoyl]phenoxy}methyl)-1H-1,2,3-triazol-1-yl]-2H-chromen-2-one (10a) Purified by column chromatography (silica gel, 40% EtOAc–PE) as a white solid; yield: 85%; mp 201–203 °C. IR (KBr): 3140, 1710, 1656, 1587, 1438, 1170, 1017, 1240, 1050, 997 cm–1. 1H NMR (400 MHz, CDCl3): δ = 8.10 (s, 1 H), 8.08 (d, J = 8.9 Hz, 2 H), 7.86 (dd, J = 8.2, 1.6 Hz, 1 H), 7.82 (d, J = 15.8 Hz, 1 H), 7.71–7.64 (m, 3 H), 7.55 (d, J = 15.6 Hz, 1 H), 7.49 (d, J = 8.4 Hz, 1 H), 7.42 (dd, J = 5.0, 1.9 Hz, 3 H), 7.36–7.40 (m, 1 H), 7.10 (d, J = 8.9 Hz, 2 H), 6.59 (s, 1 H), 5.44 (s, 2 H). 13C NMR (100.6 MHz, CDCl3): δ = 188.8, 161.7, 159.7, 154.5, 146.8, 144.8, 144.5, 135.1, 133.9, 132.1, 131.1, 130.6, 129.1, 128.6, 125.6, 125.3, 124.0, 121.8, 117.8, 114.7, 114.4, 110.3, 61.9. HRMS (ESI): m/z [M + H]+ calcd for C27H20N3O4: 450.1448; found: 450.1455.