Subscribe to RSS
DOI: 10.1055/a-2564-4720
Trimethylsilyl Triflate as an Efficient Catalyst for Intramolecular and Intermolecular Carbonyl–Alkyne Metathesis Reactions
The authors thank the DST-SERB India (CRG/2022/002217 and EEQ/2022/000198) for the financial support of this work.

Abstract
Trimethylsilyl triflate has emerged as a powerful and versatile Lewis acid catalyst in organic synthesis, offering high efficiency under mild reaction conditions. It is known for its strong electrophilic activation and is widely used for C–C bond formation, heterocyclic synthesis, and protecting-group transformations. Herein, a straightforward synthesis of various biologically and synthetically important compounds, including 2H-chromenes, coumarins, furans, pyrans, and chalcones, has been achieved through carbonyl–alkyne metathesis reactions with trimethylsilyl triflate as a Lewis acid catalyst.
Key words
carbonyl–alkyne metathesis - chromenes - coumarins - chalcones - trimethylsilyl triflate - organocatalysisSupporting Information
- Supporting information for this article is available online at https://doi-org.accesdistant.sorbonne-universite.fr/10.1055/a-2564-4720.
- Supporting Information
Publication History
Received: 29 January 2025
Accepted after revision: 21 March 2025
Accepted Manuscript online:
21 March 2025
Article published online:
01 July 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References and Notes
- 1 Fürstner A. Angew. Chem. Int. Ed. 2013; 52: 2794
- 2a Das A, Sarkar S, Chakraborty B, Kar A, Jana U. Curr. Green Chem. 2020; 7: 5
- 2b Park JY, Ullapu PR, Choo H, Lee JK, Min S.-J, Pae AN, Kim Y, Baek D.-J, Cho YS. Eur. J. Org. Chem. 2008; 5461
- 3a Cuthbertson JD, Godfrey AA, Taylor RJ. K. Org. Lett. 2011; 13: 3976
- 3b Nayak M, Kim I. J. Org. Chem. 2015; 80: 11460
- 3c Jung Y, Kim I. J. Org. Chem. 2015; 80: 2001
- 3d Lopez JG, Zaranek M, Pawluc P, Gauvin RM, Mortreux A. Oil Gas Sci. Technol. 2016; 71: 20
- 3e Saito A, Tateishi K. Heterocycles 2016; 92: 607
- 3f Garkhedkar AM, Senadi GC, Wang J.-J. Org. Lett. 2017; 19: 488
- 3g Alabugin IV, Gonzalez-Rodriguez E, Kawade RK, Stepanov AA, Vasilevsky SF. Molecules 2019; 24: 1036
- 3h Grau BW, Tsogoeva SB. Catalysts 2020; 10: 1092
- 3i McFarlin AT, Watson RB, Zehnder TE, Schindler CS. Adv. Synth. Catal. 2020; 362: 365
- 3j Ammon E, Heine P, Cordero MA. A, Lochbrunner S, Villinger A, Ehlers P, Langer P. Org. Biomol. Chem. 2023; 21: 4504
- 3k Onar H. Ç, Özden EM, Taslak HD, Gülçin İ, Ece A, Erçağ E. Chem.-Biol. Interact. 2023; 383: 110655
- 4a Hayashi A, Yamaguchi M, Hirama M. Synlett 1995; 195
- 4b Viswanathan GS, Li C.-J. Tetrahedron Lett. 2002; 43: 1613
- 4c Becker MR, Watson RB, Schindler CS. Chem. Soc. Rev. 2018; 47: 7867
- 5a Harding CE, Stanford GR. Jr. J. Org. Chem. 1989; 54: 3054
- 5b Rhee JU, Krische MJ. Org. Lett. 2005; 7: 2493
- 5c Jin T, Yamamoto Y. Org. Lett. 2007; 9: 5259
- 5d Jin T, Yang F, Liu C, Yamamoto Y. Chem. Commun. 2009; 3533
- 5e Saito A, Kasai J, Konishi T, Hanzawa Y. J. Org. Chem. 2010; 75: 6980
- 5f Liu L, Xu B, Hammond GB. Beilstein J. Org. Chem. 2011; 7: 606
- 5g Lin M.-N, Wu S.-H, Yeh M.-CP. Adv. Synth. Catal. 2011; 353: 3290
- 5h Siddiqui IR, Shamim S, Rai P, Waseem MA, Abumhdi AA. Tetrahedron Lett. 2013; 54: 6991
- 5i Ng K, Tran V, Minehan T. Tetrahedron Lett. 2016; 57: 415
- 6a Kurtz KC, Hsung RP, Zhang Y. Org. Lett. 2006; 8: 231
- 6b Saito A, Umakoshi M, Yagyu N, Hanzawa Y. Org. Lett. 2008; 10: 1783
- 6c Bera K, Sarkar S, Biswas S, Maiti S, Jana U. J. Org. Chem. 2011; 76: 3539
- 6d Kumari K, Raghuvanshi DS, Singh KN. Tetrahedron 2013; 69: 82
- 6e Murai K, Tateishi K, Saito A. Org. Biomol. Chem. 2016; 14: 10352
- 6f Das AJ, Devi R, Das SK. Tetrahedron Lett. 2018; 59: 4263
- 6g Annes SB, Ramesh S. Asian J. Org. Chem. 2019; 8: 1398
- 6h Annes SB, Vigneshwar K, Nivedha K, Manojveer S, Ramesh S. ChemistrySelect 2019; 4: 6245
- 6i Ao C, Yang X, Jia S, Xu X, Yuan Y, Zhang D, Hu W. J. Org. Chem. 2019; 84: 15331
- 6j Saini MK, Korawat HS, Verma SK, Basak AK. Tetrahedron Lett. 2020; 61: 152657
- 6k Xu T, Chen K, Zhu H.-Y, Hao W.-J, Tu S.-J, Jiang B. Org. Lett. 2020; 22: 2414
- 6l Su Z, Wang S. J. Org. Chem. 2022; 87: 16873
- 6m Sobhani M, Villinger A, Ehlers P, Langer P. J. Org. Chem. 2022; 87: 4560
- 6n Pramanik S, Chatterjee S, Banerjee R, Chowdhury C. Org. Lett. 2022; 24: 1895
- 6o Mann JS, Mai BK, Nguyen TV. ACS Catal. 2023; 13: 2696
- 6p Kumar Maurya R, Dey A, Kumara V, Khatravath M. Asian J. Org. Chem. 2024; 13: e202400259
- 6q Li R.-P, Xu X, Zhang Z, Gong X, Tang S. Org. Lett. 2024; 26: 7601
- 6r Arndt T, Breugst M. Chem. Eur. J. 2024; 30: e202402424
- 7a Mathieu B, Ghosez L. Tetrahedron 2002; 58: 8219
- 7b Ishikawa T, Okano M, Aikawa T, Saito S. J. Org. Chem. 2001; 66: 4635
- 7c Downey CW, Johnson MW, Tracy KJ. J. Org. Chem. 2008; 73: 3299
- 7d Tang E, Li W, Gao Z. Synlett 2012; 23: 907
- 7e Downey CW, Confair DN, Liu Y, Heafner ED. J. Org. Chem. 2018; 83: 12931
- 7f Chen P, Cao W, Li X, Shi D. Adv. Synth. Catal. 2021; 363: 4789
- 7g Tan J, Wang R, Xu L, Wu W, Deng M, Yuan W, Li L, Lin Z. Adv. Synth. Catal. 2023; 365: 983
- 7h Qi C, Shen X, Fang W, Chang J, Wang XN. Org. Lett. 2024; 26: 3503
- 8 Maurya RK, Kumar S, Kumar V, Dey A, Patlolla RR, Burra AG, Khatravath M. Asian J. Org. Chem. 2023; 12: e202300410
- 9 Mann JS, Mai BK, Nguyen TV. ACS Catal. 2023; 13: 2696
- 10a Cao D, Liu Z, Verwilst P, Koo S, Jangjili P, Kim JS, Lin W. Chem. Rev. 2019; 119: 10403
- 10b Hussain MI, Syed QA, Khattak MN. K, Hafez B, Reigosa MJ, El-Keblawy A. Biologia (Cham, Switz.) 2019; 74: 863
- 10c Nasab NH, Azimian F, Kruger HG, Kim SJ. ChemistrySelect 2022; 7: e202200238
- 10d Sharma SJ, Sekar N. Dyes Pigm. 2022; 202: 110306
- 10e Maurya RK, Dey A, Niharika AM, Kumar V, Burra AG, Khatravath M. J. Mol. Struct. 2024; 1322: 140091
- 11 2H-Chromenes 2a–j; General Procedure TMSOTf (20 mol%) was added to a stirred solution of the appropriate 2-(propargyloxy)benzaldehyde 1 (1 equiv) in DCE (10 mL) and the mixture mixture was heated at 80 °C for 4–10 h until the reaction was complete. H2O (20 mL) was then added and the mixture was extracted with Et2O (3 × 20 mL). The combined organic extracts were washed with brine, dried (Na2SO4), and concentrated under reduced pressure. The crude product was purified by column chromatography. 2H-Chromen-3-yl(phenyl)methanone (2a) Prepared according to the general procedure from 1a (120 mg, 0.5 mmol) as a yellowish oil; yield: 113 mg (94%). IR (ATR): 3058, 2921, 2854, 1621, 1454, 1334, 1224, 1137, 1012, 923, 757 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.72 (dd, J = 5.1, 3.3 Hz, 2 H), 7.58 (ddd, J = 6.7, 3.9, 1.3 Hz, 1 H), 7.49 (dd, J = 10.4, 4.6 Hz, 2 H), 7.29 (dd, J = 7.8, 1.4 Hz, 1 H), 7.14–7.08 (m, 2 H), 6.96–6.88 (m, 2 H), 5.17 (d, J = 1.1 Hz, 2 H). 13C NMR (101 MHz, CDCl3): δ = 194.1, 155.6, 137.6, 137.1, 132.6, 132.0, 129.8, 129.4, 129.0, 128.5, 121.9, 121.0, 116.4, 65.3. The spectroscopic data matched those previously reported.6f