Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www-thieme-connect-de.accesdistant.sorbonne-universite.fr/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2025; 36(11): 1565-1568
DOI: 10.1055/a-2554-2855
DOI: 10.1055/a-2554-2855
letter
Hydrogen Atom Transfer Reactions
Palladium/TBADT-Cocatalyzed Acyl C–H Alkenylation of Aldehydes with Alkenyl Triflates
This work is supported by the National Natural Science Foundation of China (22071230, 22271267, 22471256).

Abstract
By merging palladium and tetrabutylammonium decatungstate as a hydrogen-atom-transfer photocatalyst, we accomplished the acyl C–H alkenylation of aldehydes with alkenyl triflates, enabling the synthesis of a variety of multi-substituted cyclic alkenes under mild conditions.
Supporting Information
- Supporting information for this article is available online at https://doi-org.accesdistant.sorbonne-universite.fr/10.1055/a-2554-2855.
- Supporting Information
Publication History
Received: 13 February 2025
Accepted after revision: 10 March 2025
Accepted Manuscript online:
10 March 2025
Article published online:
14 April 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Lei Z, Banerjee A, Kusevska E, Rizzo E, Liu P, Ngai M.-Y. Angew. Chem. Int. Ed. 2019; 58: 7318
- 1b Tanaka S, Kunisawa T, Yoshii Y, Hattori T. Org. Lett. 2019; 21: 8509
- 1c Liu K, Studer A. J. Am. Chem. Soc. 2021; 143: 4903
- 2a Kammer LM, Lipp B, Opatz T. J. Org. Chem. 2019; 84: 2379
- 2b Deng X.-Z, Chen Z.-Y, Song Y, Xue F, Yamane M, Yue N.-Y. J. Org. Chem. 2021; 86: 12693
- 2c Li Y, Shao Q, He H, Zhu C, Xue X.-S, Xie J. Nat. Commun. 2022; 13: 10
- 3a Zhang N, Yang D, Wei W, Yuan L, Nie F, Tian L, Wang H. J. Org. Chem. 2015; 80: 3258
- 3b Jiang Q, Jia J, Xu B, Zhao A, Guo C.-C. J. Org. Chem. 2015; 80: 3586
- 3c Wu S, Yu H, Hu Q, Yang Q, Xu S, Liu T. Tetrahedron Lett. 2017; 58: 4763
- 4 Wu X.-F, Neumann H, Spannenberg A, Schulz T, Jiao H, Beller M. J. Am. Chem. Soc. 2010; 132: 14596
- 5a Willis MC. Chem. Rev. 2010; 110: 725
- 5b Ghosh A, Johnson KF, Vickerman KL, Walker JA, Stanley LM. Org. Chem. Front. 2016; 3: 639
- 6a Shi Z, Schröder N, Glorius F. Angew. Chem. Int. Ed. 2012; 51: 8092
- 6b Wang J, Liu C, Yuan J, Lei A. Angew. Chem. Int. Ed. 2013; 52: 2256
- 6c Cao H, Kuang Y, Shi X, Wong KL, Tan BB, Kwan JM. C, Liu X, Wu J. Nat. Commun. 2020; 11: 1956
- 6d Wang C.-H, Guo J.-D, Yu J.-X, Qiao J, Chen B, Tung C.-H, Wu L.-Z. Org. Lett. 2024; 26: 6927
- 7 Roscales S, Csáky AG. Angew. Chem. Int. Ed. 2021; 60: 8728
- 8a Rajkiewicz AA, Kalek M. Org. Lett. 2018; 20: 1906
- 8b Zhang X, MacMillan DW. C. J. Am. Chem. Soc. 2017; 139: 11353
- 9a
Hill CL.
Synlett 1995; 127
- 9b Tzirakis MD, Lykakis IN, Orfanopoulos M. Chem. Soc. Rev. 2009; 38: 2609
- 9c Ravelli D, Protti S, Fagnoni M. Acc. Chem. Res. 2016; 49: 2232
- 9d Ravelli D, Fagnoni M, Fukuyama T, Nishikawa T, Ryu I. ACS Catal. 2018; 8: 701
- 9e Yuan X, Yang G, Yu B. Chin. J. Org. Chem. 2020; 40: 3620
- 9f Capaldo L, Ravelli D, Fagnoni M. Chem. Rev. 2022; 122: 1875
- 9g Cao H, Tang X, Tang H, Yuan Y, Wu J. Chem Catal. 2021; 1: 523
- 9h
Bonciolini S,
Noël T,
Capaldo L.
Eur. J. Org. Chem. 2022; e202200417
- 9i Hong B.-C, Indurmuddam RR. Org. Biomol. Chem. 2024; 22: 3799
- 10a Perry IB, Brewer TF, Sarver PJ, Schultz DM, DiRocco DA, MacMillan DW. C. Nature 2018; 560: 70
- 10b Fan P, Lan Y, Zhang C, Wang C. J. Am. Chem. Soc. 2020; 142: 2180
- 10c Wang L, Wang T, Cheng G.-J, Li X, Wei J.-J, Guo B, Zheng C, Chen G, Ran C, Zheng C. ACS Catal. 2020; 10: 7543
- 10d Fan P, Zhang C, Zhang L, Wang C. Org. Lett. 2020; 22: 3875
- 10e Sarver PJ, Bacauanu V, Shultz DM, DiRocco DA, Lam Y.-h, Sherer EC, MacMillan DW. C. Nat. Chem. 2020; 12: 459
- 10f Fan P, Jin Y, Liu J, Wang R, Wang C. Org. Lett. 2021; 23: 7364
- 10g Fan P, Wang R, Wang C. Org. Lett. 2021; 23: 7672
- 10h Xu S, Chen H, Zhu J, Kong W. Angew. Chem. Int. Ed. 2021; 60: 7405
- 10i Murugesan V, Ganguly A, Karthika A, Rasappan R. Org. Lett. 2021; 23: 5389
- 10j Mazzarella D, Pulcinella A, Bovy L, Broersma R, Noël T. Angew. Chem. Int. Ed. 2021; 60: 21277
- 10k Liu W, Ke Y, Liu C, Kong W. Chem. Commun. 2022; 58: 11937
- 10l Fan P, Mao Y, Wang C. Org. Chem. Front. 2022; 9: 4649
- 10m
Li X,
Mao Y,
Fan P,
Wang C.
Eur. J. Org. Chem. 2022; e202200214
- 10n Wang R, Fan P, Wang C. ACS Catal. 2023; 13: 141
- 10o Wang R, Wang C. Chem. Sci. 2023; 14: 6449
- 10p Hu X, Cheng-Sánchez I, Kong W, Molander GA, Nevado C. Nat. Catal. 2024; 7: 655
- 10q Wang R, Wang C. Cell Rep. Phys. Sci. 2024; 5: 102216
- 11
Ethyl 2-Butyrylcyclohex-1-ene-1-carboxylate (3aa); Typical Procedure: Pd(TFA)2 (3.3 mg, 0.01 mmol, 5 mol%), tri-o-tolylphosphane (L4; 6.1 mg, 0.02 mmol, 10 mol%), tetrabutylammonium decatungstate (TBADT; 33.2 mg, 0.01
mmol, 5 mol%), and K3PO4 (46.6 mg, 0.22 mmol, 1.1 equiv) were placed in a Schlenk tube equipped with a stir
bar. After the Schlenk tube was evacuated and filled with nitrogen (three cycles),
MeCN (1.0 mL), ethyl 2-{[(trifluoromethyl)sulfonyl]oxy}cyclohex-1-ene-1-carboxylate
(1a; 0.2 mmol, 1.0 equiv), and butyraldehyde (2a; 43.2 mg, 0.6 mmol, 3.0 equiv) were added under a positive flow of nitrogen. The
resultant mixture was stirred and irradiated using two 34 W 390 nm LED lamps (Kessil
PR160-390, 5 cm away, with adequate fans to maintain the reaction at room temperature)
for 18 h. After exposure to air for 15 min, the crude materials were purified through
column chromatography on silica gel (petroleum ether/ethyl acetate = 20:1) to give
the product 3aa (34.1 mg, 76% yield). 1H NMR (500 MHz, CDCl3): δ = 4.17 (q, J = 7.1 Hz, 2 H), 2.57–2.52 (m, 2 H), 2.41–2.05 (m, 4 H), 1.72–1.64 (m, 6 H), 1.26
(t, J = 7.1 Hz, 3 H), 0.96 (t, J = 7.4 Hz, 3 H). 13C NMR (126 MHz, CDCl3): δ = 208.6, 167.0, 150.9, 126.5, 60.9, 43.1, 27.7, 24.7, 21.5, 21.3, 16.9, 14.1,
13.8. HRMS (ESI): m/z calcd. for C13H20NaO3
+: 247.1305; found: 247.1311.
For reviews on TBADT-catalyzed reactions, see: